Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(g_{-1}\) | \(h_{1}\) | \(g_{1}\) | \(g_{12}\) | \(g_{4}\) | \(g_{3}\) | \(g_{10}\) | \(g_{11}\) |
weight | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi\) | \(0\) | \(4\psi\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}-2\psi\) | \(\omega_{1}+\omega_{2}+\omega_{3}+2\psi\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi} \) → (0, 0, 0, -4) | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{4\psi} \) → (0, 0, 0, 4) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}-2\psi} \) → (1, 1, 1, -2) | \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}+2\psi} \) → (1, 1, 1, 2) | ||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | ||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
| Semisimple subalgebra component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
| ||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}-\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}-\omega_{3}\) | ||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi\) | \(0\) | \(4\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}-2\psi\) \(-\omega_{1}+\omega_{2}+\omega_{3}-2\psi\) \(\omega_{1}-\omega_{2}+\omega_{3}-2\psi\) \(\omega_{1}+\omega_{2}-\omega_{3}-2\psi\) \(-\omega_{1}-\omega_{2}+\omega_{3}-2\psi\) \(-\omega_{1}+\omega_{2}-\omega_{3}-2\psi\) \(\omega_{1}-\omega_{2}-\omega_{3}-2\psi\) \(-\omega_{1}-\omega_{2}-\omega_{3}-2\psi\) | \(\omega_{1}+\omega_{2}+\omega_{3}+2\psi\) \(-\omega_{1}+\omega_{2}+\omega_{3}+2\psi\) \(\omega_{1}-\omega_{2}+\omega_{3}+2\psi\) \(\omega_{1}+\omega_{2}-\omega_{3}+2\psi\) \(-\omega_{1}-\omega_{2}+\omega_{3}+2\psi\) \(-\omega_{1}+\omega_{2}-\omega_{3}+2\psi\) \(\omega_{1}-\omega_{2}-\omega_{3}+2\psi\) \(-\omega_{1}-\omega_{2}-\omega_{3}+2\psi\) | ||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}-2\psi}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}-2\psi}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-2\psi} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}-2\psi}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}-2\psi}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}-2\psi} \oplus M_{\omega_{1}-\omega_{2}-\omega_{3}-2\psi}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}-2\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}+2\psi}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}+2\psi}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}+2\psi} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}+2\psi}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}+2\psi}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+2\psi} \oplus M_{\omega_{1}-\omega_{2}-\omega_{3}+2\psi}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}+2\psi}\) | ||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}-2\psi}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}-2\psi}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-2\psi} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}-2\psi}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}-2\psi}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}-2\psi} \oplus M_{\omega_{1}-\omega_{2}-\omega_{3}-2\psi}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}-2\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}+2\psi}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}+2\psi}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}+2\psi} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}+2\psi}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}+2\psi}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+2\psi} \oplus M_{\omega_{1}-\omega_{2}-\omega_{3}+2\psi}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}+2\psi}\) |